Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.934
Filtrar
1.
ACS Biomater Sci Eng ; 10(4): 2442-2450, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38530812

RESUMO

With the progression of regenerative medicine and cell therapy, the importance of cryopreservation techniques for cultured cells continues to rise. Traditional cryoprotectants, such as dimethyl sulfoxide and glycerol, are effective in cryopreserving suspended cells, but they do not demonstrate sufficient efficacy for two-dimensional (2D)-cultured cells. In the past decade, small molecules and polymers have been studied as cryoprotectants. Some L-amino acids have been reported to be natural and biocompatible cryoprotectants. However, the cryoprotective effects of D-amino acids have not been investigated for such organized cells. In the present study, the cryoprotective effects of D- and L-amino acids and previously reported cryoprotectants were assessed using HepG2 cells cultured on a microplate without suspending the cells. d-Proline had the highest cryoprotective effect on 2D-cultured cells. The composition of the cell-freezing solution and freezing conditions were then optimized. The d-proline-containing cell-freezing solution also effectively worked for other cell lines. To minimize the amount of animal-derived components, fetal bovine serum in the cell freezing solution was substituted with bovine serum albumin and StemFit (a commercial supplement for stem cell induction). Further investigations on the mechanism of cryopreservation suggested that d-proline protected enzymes essential for cell survival from freeze-induced damage. In conclusion, an effective and xeno-free cell-freezing solution was produced using d-proline combined with dimethyl sulfoxide and StemFit for 2D-cultured cells.


Assuntos
Crioprotetores , Dimetil Sulfóxido , Animais , Humanos , Crioprotetores/farmacologia , Crioprotetores/química , Dimetil Sulfóxido/farmacologia , Aminoácidos/farmacologia , Criopreservação/métodos , Linhagem Celular , Prolina/farmacologia , Aminas
2.
Sci Rep ; 14(1): 6726, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509209

RESUMO

Poor germination and seedlings growth can lead to significant economic losses for farmers, therefore, sustainable agricultural strategies to improve germination and early growth of crops are urgently needed. The objective of this work was to evaluate selenium nanoparticles (Se NPs) as nanopriming agents for tomato (Solanum lycopersicum) seeds germinated without stress conditions in both trays and Petri dishes. Germination quality, seedlings growth, synergism-antagonism of Se with other elements, and fate of Se NPs, were determined as function of different Se NPs concentrations (1, 10 and 50 ppm). Results indicated that the germination rate in Petri dishes improved with 10 ppm, while germination trays presented the best results at 1 ppm, increasing by 10 and 32.5%, respectively. Therefore, seedlings growth was measured only in germination trays. Proline content decreased up to 22.19% with 10 ppm, while for same treatment, the total antioxidant capacity (TAC) and total chlorophyll content increased up to 38.97% and 21.28%, respectively. Antagonisms between Se with Mg, K, Mn, Zn, Fe, Cu and Mo in the seed were confirmed. In the case of seedlings, the N content decreased as the Se content increased. Transmission Electron Microscopy (TEM) imaging confirmed that Se NPs surrounded the plastids of the seed cells. By this finding, it can be inferred that Se NPs can reach the embryo, which is supported by the antagonism of Se with important nutrients involved in embryogenesis, such as K, Mg and Fe, and resulted in a better germination quality. Moreover, the positive effect of Se NPs on total chlorophyll and TAC, and the negative correlation with proline content with Se content in the seed, can be explained by Se NPs interactions with proplastids and other organelles within the cells, resulting with the highest length and fresh weight when seeds were exposed to 1 ppm.


Assuntos
Nanopartículas , Selênio , Solanum lycopersicum , Plântula , Germinação , Selênio/farmacologia , Antioxidantes/farmacologia , Sementes , Clorofila/farmacologia , Prolina/farmacologia
3.
Sci Rep ; 14(1): 2764, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308017

RESUMO

Aquatic biota are threatened by climate warming as well as other anthropogenic stressors such as eutrophication by phosphates and nitrate. However, it remains unclear how nitrate exposure can alter the resilience of microalgae to climate warming, particularly heatwaves. To get a better understanding of these processes, we investigated the effect of elevated temperature and nitrate pollution on growth, metabolites (sugar and protein), oxidative damage (lipid peroxidation), and antioxidant accumulation (polyphenols, proline) in Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. The experiment involved a 3 × 3 factorial design, where microalgae were exposed to one of three nitrate levels (5, 50, or 200 mg L-1 NO3-l) at 20 °C for 2 weeks. Subsequently, two heatwave scenarios were imposed: a short and moderate heatwave at 24 °C for 2 weeks, and a long and intense heatwave with an additional 2 weeks at 26 °C. A positive synergistic effect of heatwaves and nitrate on growth and metabolites was observed, but this also led to increased oxidative stress. In the short and moderate heatwave, oxidative damage was controlled by increased antioxidant levels. The high growth, metabolites, and antioxidants combined with low oxidative stress during the short and moderate heatwaves in moderate nitrate (50 mg L-1) led to a sustainable increased food availability to grazers. On the other hand, long and intense heatwaves in high nitrate conditions caused unsustainable growth due to increased oxidative stress and relatively low antioxidant (proline) levels, increasing the risk for massive algal die-offs.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Antioxidantes/metabolismo , Nitratos/farmacologia , Microalgas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Prolina/farmacologia
4.
Cell Rep ; 43(2): 113738, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354087

RESUMO

Mitochondrial dysfunction is a hallmark of cellular senescence, with the loss of mitochondrial function identified as a potential causal factor contributing to senescence-associated decline in cellular functions. Our recent findings revealed that ectopic expression of the pluripotency transcription factor NANOG rejuvenates dysfunctional mitochondria of senescent cells by rewiring metabolic pathways. In this study, we report that NANOG restores the expression of key enzymes, PYCR1 and PYCR2, in the proline biosynthesis pathway. Additionally, senescent mesenchymal stem cells manifest severe mitochondrial respiratory impairment, which is alleviated through proline supplementation. Proline induces mitophagy by activating AMP-activated protein kinase α and upregulating Parkin expression, enhancing mitochondrial clearance and ultimately restoring cell metabolism. Notably, proline treatment also mitigates several aging hallmarks, including DNA damage, senescence-associated ß-galactosidase, inflammatory cytokine expressions, and impaired myogenic differentiation capacity. Overall, this study highlights the role of proline in mitophagy and its potential in reversing senescence-associated mitochondrial dysfunction and aging hallmarks.


Assuntos
Mitocôndrias , Doenças Mitocondriais , Humanos , Senescência Celular , Prolina/farmacologia
5.
Anim Reprod Sci ; 263: 107429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382197

RESUMO

Sperm cryopreservation technology significantly contributes to the safeguarding of genetic resources, particularly for endangered species, and supports the use of artificial insemination in domestic animals. Therefore, cryopreservation can negatively affect sperm health and function leading to reduce the freezing ability and fertility potential. Therefore, it is essential to prioritize the improvement of cryotolerance in cryopreserved sperm to enhance reproductive efficiency and ensure sustainability in livestock herds. The main reason for sperm dysfunction after thawing may be related to the excessive amount of oxidative stress (OS) produced during cryopreservation. Scientists have different ways for counteracting this OS including the use of plant extracts, enzymes, minerals, anti-freezing proteins, and amino acids. Recently, one such amino acid is L-proline (LP), which has multiple roles such as osmotic and OS defense, nitrogen, and carbon metabolism, as well as cell survival and signaling. LP has been found in seminal plasma and has recently been added to the freezing extender to improve the various post-thaw parameters of sperm. This improvement is related to the ability of LP to reduce the OS, sustain the plasma membrane and to act as an osmoregulatory agent. Moreover, LP can suppress cell apoptosis by modulating intracellular redox in sperm. This review addresses the ongoing research on the addition of L-proline as an osmoregulatory agent in freezing extenders to increase the cryotolerance of animal spermatozoa to freeze-thaw.


Assuntos
Preservação do Sêmen , Sêmen , Masculino , Animais , Prolina/farmacologia , Preservação do Sêmen/veterinária , Espermatozoides , Criopreservação/veterinária , Aminoácidos , Motilidade dos Espermatozoides , Crioprotetores/farmacologia
6.
J Hazard Mater ; 468: 133134, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387171

RESUMO

The rising heavy metal contamination of soils imposes toxic impacts on plants as well as other life forms. One such highly toxic and carcinogenic heavy metal is hexavalent chromium [Cr(VI)] that has been reported to prominently retard the plant growth. The present study investigated the potential of silicon (Si, 10 µM) to alleviate the toxicity of Cr(VI) (25 µM) on roots of wheat (Triticum aestivum L.) seedlings. Application of Si to Cr(VI)-stressed wheat seedlings improved their overall growth parameters. This study also reveals the involvement of two phytohormones, namely auxin and cytokinin and their crosstalk in Si-mediated mitigation of the toxic impacts of Cr(VI) in wheat seedlings. The application of cytokinin alone to wheat seedlings under Cr(VI) stress reduced the intensity of toxic effects of Cr(VI). In combination with Si, cytokinin application to Cr(VI)-stressed wheat seedlings significantly minimized the decrease induced by Cr(VI) in different parameters such as root-shoot length (10.8% and 13%, respectively), root-shoot fresh mass (11.3% and 10.1%, respectively), and total chlorophyll and carotenoids content (13.4% and 6.8%, respectively) with respect to the control. This treatment also maintained the regulation of proline metabolism (proline content, and P5CS and PDH activities), ascorbate-glutathione (AsA-GSH) cycle and nutrient homeostasis. The protective effect of Si and cytokinin against Cr(VI) stress was minimized upon supplementation of an inhibitor of polar auxin transport- 2,3,5-triiodobenzoic acid (TIBA) which suggested a potential involvement of auxin in Si and cytokinin-mediated mitigation of Cr(VI) toxicity. The exogenous addition of a natural auxin - indole-3-acetic acid (IAA) confirmed auxin is an active member of a signaling cascade along with cytokinin that aids in Si-mediated Cr(VI) toxicity alleviation as IAA application reversed the negative impacts of TIBA on wheat roots treated with Cr(VI), cytokinin and Si. The results of this research are also confirmed by the gene expression analysis conducted for nutrient transporters (Lsi1, CCaMK, MHX, SULT1 and ZIP1) and enzymes involved in the AsA-GSH cycle (APX, GR, DHAR and MDHAR). The overall results of this research indicate towards possible induction of a crosstalk between cytokinin and IAA upon Si supplementation which in turn stimulates physiological, biochemical and molecular changes to exhibit protective effects against Cr(VI) stress. Further, the information obtained suggests probable employment of Si, cytokinin and IAA alone or combined in agriculture to maintain plant productivity under Cr(VI) stress and data regarding expression of key genes can be used to develop new crop varieties with enhanced resistance against Cr(VI) stress together with its reduced load in seedlings.


Assuntos
Plântula , Ácidos Tri-Iodobenzoicos , Triticum , Triticum/metabolismo , Silício/farmacologia , Citocininas/farmacologia , Citocininas/metabolismo , Antioxidantes/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Ácidos Indolacéticos/farmacologia , Prolina/metabolismo , Prolina/farmacologia , Estresse Oxidativo
7.
Appl Environ Microbiol ; 90(2): e0156223, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289135

RESUMO

The outstanding desiccation tolerance of Cronobacter sakazakii (C. sakazakii) enables long-term persistence in food products with low-water activity to increase the infection risk, especially in low-birth-weight, immuno-compromised neonates, and infants less than 4 weeks of age. In our previous study, the disruption of glutathione transport-related gene gsiD by transposon was found to significantly increase its inactivation rate under drying stress challenges. However, the mechanism underlying the association between glutathione transport and desiccation tolerance of C. sakazakii remains to be clarified. In this study, the mechanism underlying their association was investigated in detail by constructing the gsiD gene deletion mutant. gsiD gene deletion was found to cause the dysfunction of the glutathione transport system GsiABCD and the limitation of glutathione import. The resulting decrease in intracellular glutathione caused the decreased potassium ions uptake and increased potassium ions efflux, inhibited the proline synthesis process, limited extracellular glutathione utilization, increased oxidant stress, reduced biofilm formation, and increased outer membrane permeability, which may be the main reasons for the significant reduction of the desiccation tolerance of C. sakazakii.IMPORTANCEContributing to its superior environmental adaptability, Cronobacter sakazakii can survive under many abiotic stress conditions. The outstanding desiccation tolerance makes this species persist in low-water activity foods, which increases harm to humans. For decades, many studies have focused on the desiccation tolerance of C. sakazakii, but the existing research is still insufficient. Our study found that gsiD gene deletion inhibited glutathione uptake and further decreased intracellular glutathione content, causing a decrease in desiccation tolerance and biofilm formation and an increase in outer membrane permeability. Moreover, the expression level of relative genes verified that gsiD gene deletion made the mutant not conducive to surviving in dry conditions due to restricting potassium ions uptake and efflux, inhibiting the conversion of glutamate to compatible solute proline, and increasing the oxidative stress of C. sakazakii. The above results enrich our knowledge of the desiccation tolerance mechanism of C. sakazakii.


Assuntos
Cronobacter sakazakii , Cronobacter , Lactente , Recém-Nascido , Humanos , Dessecação , Cronobacter sakazakii/genética , Água/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Potássio/metabolismo , Íons/metabolismo
8.
Ecotoxicol Environ Saf ; 270: 115898, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171101

RESUMO

Cranial radiotherapy is an important treatment for intracranial and head and neck tumors. To investigate the effects of cranial irradiation (C-irradiation) on gut microbiota and metabolomic profile, the feces, plasma and cerebral cortex were isolated after exposing mice to cranial X-ray irradiation at a dose rate of 2.33 Gy/min (5 Gy/d for 4 d consecutively). The gut microorganisms and metabolites were detected by 16 S rRNA gene sequencing method and LC-MS method, respectively. We found that compared with sham group, the gut microbiota composition changed at 2 W and 4 W after C-irradiation at the genus level. The fecal metabolomics showed that compared with Sham group, 44 and 66 differential metabolites were found to be annotated into metabolism pathways at 2 W and 4 W after C-irradiation, which were significantly enriched in the arginine and proline metabolism. Metabolome analysis of serum and cerebral cortex showed that, at 4 W after C-irradiation, the expression pattern of metabolites in serum samples of mice was similar to that of sham group, and the cerebral cortex metabolites of the two groups were completely separated. KEGG functional analysis showed that serum and brain tissue differential metabolites were respectively enriched in tryptophan metabolism, and arginine proline metabolism. The correlation analysis showed that the changes of gut microbiota genera were significantly correlated with the changes of metabolism, especially Helicobacter, which was significantly correlated with many different metabolites at 4 W after C-irradiation. These data suggested that C-irradiation could affect the gut microbiota and metabolism profile, even at relatively long times after C-irradiation.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Raios X , Metabolômica/métodos , Fezes , Irradiação Craniana , Arginina/farmacologia , Prolina/farmacologia , RNA Ribossômico 16S/genética
9.
Int J Food Microbiol ; 410: 110495, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37980813

RESUMO

Aspergilli can be used to produce food but can spoil it as well. Both food production and spoilage are initiated by germination of the conidia of these fungi that have been introduced by inoculation and contamination, respectively. Germination of these spores includes activation, swelling, establishment of cell polarity, and formation of a germ tube. So far, only quantitative single-species germination studies of fungal spores have been performed. Here, spore germination of the food spoilage fungus Aspergillus niger was studied quantitatively in mono-culture or when mixed with other food-relevant aspergilli (Aspergillus nidulans, Aspergillus terreus, Aspergillus clavatus, and Aspergillus oryzae). In the presence of the germination inducing amino acids proline or alanine, but not in the case of the lowly inducing amino acid arginine, the incidence of swelling and germ tube formation was reduced when 35,000 extra conidia of Aspergillus niger were added to wells containing 5000 of these spores. Adding 35,000 spores of one of the other aspergilli also did not have an effect on germination in the presence of arginine, but the germination inhibition was stronger when compared to the extra A. niger spores in the case of alanine. A similar effect was obtained with proline. Together, results show that the germination of A. niger conidia is impacted by the density of its own spores and that of other aspergilli under favorable nutritional conditions. These results increase our understanding of food spoilage by fungi and can be used to optimize food production with fungi.


Assuntos
Alanina , Aspergillus niger , Esporos Fúngicos , Alanina/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Arginina/farmacologia
10.
J Med Chem ; 67(3): 1825-1842, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38124427

RESUMO

The outer membrane (OM) of Gram-negative bacteria is the most difficult obstacle for small-molecule antibiotics to reach their targets in the cytosol. The molecular features of Gram-negative antibiotics required for passing through the OM are that they should be positively charged rather than neutral, flat rather than globular, less flexible, or more increased amphiphilic moment. Because of these specific molecular characteristics, developing Gram-negative antibiotics is difficult. We focused on sensitizer peptides to facilitate the passage of hydrophobic Gram-positive antibiotics through the OM. We explored ways of improving the sensitizing ability of proline-hinged α-helical peptides by adjusting their length, hydrophobicity, and N-terminal groups. A novel peptide, 1403, improves the potentiation of rifampicin in vitro and in vivo and potentiates most Gram-positive antibiotics. The "sensitizer" approach is more plausible than those that rely on conventional drug discovery methods concerning drug development costs and the development of drug resistance.


Assuntos
Antibacterianos , Prolina , Antibacterianos/farmacologia , Antibacterianos/química , Prolina/farmacologia , Peptídeos , Rifampina , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
11.
Cells ; 12(22)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998375

RESUMO

The culture of embryos in the non-essential amino acid L-proline (Pro) or its analogues pipecolic acid (PA) and L-4-thiazolidine carboxylic acid (L4T) improves embryo development, increasing the percentage that develop to the blastocyst stage and hatch. Staining of 2-cell and 4-cell embryos with tetramethylrhodamine methyl ester and 2',7'-dichlorofluorescein diacetate showed that the culture of embryos in the presence of Pro, or either of these analogues, reduced mitochondrial activity and reactive oxygen species (ROS), respectively, indicating potential mechanisms by which embryo development is improved. Inhibition of the Pro metabolism enzyme, proline oxidase, by tetrahydro-2-furoic-acid prevented these reductions and concomitantly prevented the improved development. The ways in which Pro, PA and L4T reduce mitochondrial activity and ROS appear to differ, despite their structural similarity. Specifically, the results are consistent with Pro reducing ROS by reducing mitochondrial activity while PA and L4T may be acting as ROS scavengers. All three may work to reduce ROS by contributing to the GSH pool. Overall, our results indicate that reduction in mitochondrial activity and oxidative stress are potential mechanisms by which Pro and its analogues act to improve pre-implantation embryo development.


Assuntos
Estresse Oxidativo , Prolina , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Prolina/farmacologia , Prolina/metabolismo , Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia
12.
Sci Rep ; 13(1): 18315, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880216

RESUMO

Silicon (Si) and/or proline (Pro) are natural supplements that are considered to induce plants' stress tolerance against various abiotic stresses. Sweet corn (Zea mays L. saccharata) production is severely afflicted by salinity stress. Therefore, two field tests were conducted to evaluate the potential effects of Si and/or Pro (6mM) used as seed soaking (SS) and/or foliar spray (FS) on Sweet corn plant growth and yield, physio-biochemical attributes, and antioxidant defense systems grown in a saline (EC = 7.14dS m-1) soil. The Si and/or Pro significantly increased growth and yield, photosynthetic pigments, free proline, total soluble sugars (TSS), K+/Na+ratios, relative water content (RWC), membrane stability index (MSI), α-Tocopherol (α-TOC), Ascorbate (AsA), glutathione (GSH), enzymatic antioxidants activities and other anatomical features as compared to controls. In contrast, electrolytes, such as SS and/or FS under salt stress compared to controls (SS and FS using tap water) were significantly decreased. The best results were obtained when SS was combined with FS via Si or Pro. These alterations are brought about by the exogenous application of Si and/or Pro rendering these elements potentially useful in aiding sweet corn plants to acclimate successfully to saline soil.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/farmacologia , Silício/farmacologia , Prolina/farmacologia , Estresse Salino , Glutationa , Água , Solo/química
13.
Cryo Letters ; 44(3): 160-168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883169

RESUMO

BACKGROUND: Cryopreservation in liquid nitrogen is a suitable technique for preserving seaweeds, a group of photosynthetic organisms with many applications. Although there are some standard protocols for seaweed cryopreservation, most rely on expensive controlled-rate coolers. Moreover, several factors, such as the use of antioxidants or antibiotics, remain unexplored. OBJECTIVE: To test the effect of 2-mercapthoethanol (antioxidant) and antibiotic mixtures on the cryopreservation of the model alga Ectocarpus siliculosus and the endemic brown seaweed Acinetospora asiatica using a low-tech passive rate cooler. MATERIALS AND METHODS: 2-mercaptoethanol was added to the cryoprotectant (CPA) solution, while antibiotic mixtures were included in the culture medium during the recovery process. In addition, two CPA solutions were tested on E. siliculosus. RESULTS: After two weeks of recovery, the treatment comprising PSC antibiotic mixture (Penicillin G, streptomycin, and chloramphenicol) showed a significant increase in post-thaw viability. Antioxidant treatment did not improve viability. The highest viabilities for E. siliculosus and A. asiatica were 64-83%, and 83-87%, respectively, using 10% glycerol + 10% proline as CPA solution. CONCLUSION: E. siliculosus and A. asiatica were successfully cryopreserved using a low-tech passive rate cooler, 10% glycerol + 10% proline solution, and antibiotic treatment. The highest post-thaw viabilities (64-87%) reported for PSC antibiotic mixture suggest the potential benefits of using antibiotics during post-thaw recovery of marine macroalgae. This study is the first report on the cryopreservation of A. asiatica. DOI: 10.54680/fr23310110212.


Assuntos
Criopreservação , Antioxidantes/farmacologia , Glicerol/farmacologia , Crioprotetores/farmacologia , Prolina/farmacologia , Antibacterianos/farmacologia
14.
Toxicol Appl Pharmacol ; 478: 116708, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778480

RESUMO

Pentachlorophenol (PCP) is a ubiquitous environmental toxicant with various adverse effects. Although its neurotoxicity has been reported, the underlying mechanism and subsequent detoxification remain unclear. In this study, embryos and adult zebrafish were exposed to PCP to determine its potential neurotoxic mechanism and protective indicators. The survival rate, heart rate, mobility time, active status and moving distance were significantly decreased in larvae after 30 µg/L PCP exposure. Likewise, the mobile time, latency to the first movement, velocity and moving distance of adult zebrafish were significantly reduced by PCP exposure. Untargeted metabolomics analysis of larvae revealed that arginine and proline metabolism was the primary pathway affected by PCP exposure, reflected by increased proline and decreased citrulline (CIT) contents, which were confirmed by quantitative data. PCP exposure suppressed the conversion from arginine to CIT in larvae by downregulating the expression of nos1 and nos2a. Ornithine content was increased in the brains and intestines of adult zebrafish after PCP exposure, which inhibited ornithine catabolism to CIT by downregulating otc, resulting in reduced CIT. Intriguingly, CIT supplementation significantly restored the neurobehavioral defects induced by PCP in larvae and adult zebrafish. CIT supplementation upregulated the expression of ef1α and tuba1 in larvae and inhibited the downregulation of ef1α in the brains of adult zebrafish. Taken together, these results indicated that CIT supplementation could protect against PCP-induced neurotoxicity by upregulating the expression of genes involved in neuronal development and function.


Assuntos
Pentaclorofenol , Animais , Pentaclorofenol/farmacologia , Pentaclorofenol/toxicidade , Peixe-Zebra/metabolismo , Citrulina/metabolismo , Citrulina/farmacologia , Larva , Arginina/metabolismo , Arginina/farmacologia , Ornitina/metabolismo , Ornitina/farmacologia , Prolina/metabolismo , Prolina/farmacologia
15.
Environ Sci Pollut Res Int ; 30(51): 110826-110840, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794225

RESUMO

This study was designed to assess the recovery effect of pomegranate seed extract (PSEx) against nickel (Ni)-induced damage in Allium cepa. Except for the control group treated with tap water, five experimental groups were exposed to 265 mg L-1 PSEx, 530 mg L-1 PSEx, 1 mg L-1 NiCI2, 265 mg L-1 PSEx + 1 mg L-1 NiCI2, and 530 mg L-1 PSEx + 1 mg L-1 NiCI2, respectively. The toxicity of Ni was examined through the analysis of physiological (germination percentage, weight gain, and root length), cytotoxicity (mitotic index), genotoxicity (micronucleus, chromosomal anomalies, and Comet test), and biochemical (malondialdehyde, proline, chlorophyll a and chlorophyll b contents, the activities of superoxide dismutase and catalase) parameters. Meristematic cell defects were also investigated. The NiCl2-DNA interaction was evaluated through spectral shift analysis. Values of all physiological parameters, mitotic index scores, and chlorophyll contents decreased while micronucleus frequency, DNA tail percentage, chromosomal anomalies, proline, MDA, and enzyme activities increased following Ni administration. According to the tail DNA percentage scale, Ni application caused "high damage" to DNA. Ni-induced chromosomal anomalies were fragment, sticky chromosome, vagrant chromosome, bridge, unbalanced chromatin distribution, reverse polarization, and nucleus with bud. NiCl2-DNA interaction caused a hyperchromic shift in the UV/Vis spectrum of DNA by spectral profile analysis. Ni exposure impaired root meristems as evidenced by the formation of epidermis cell damage, flattened cell nucleus, thickened cortex cell wall, and blurry vascular tissue. Substantial recovery was seen in all parameters with the co-administration of PSEx and Ni. Recovery effects in the parameters were 18-51% and 41-84% in the 265 mg L-1 PSEx + 1 mg L-1 NiCI2 and 530 mg L-1 PSEx + 1 mg L-1 NiCI2 groups, respectively. The Comet scale showed that PSEx applied with Ni reduced DNA damage from "high" to "moderate." Ni-induced thickened cortex cell wall and blurry vascular tissue damage disappeared completely when 530 mg L-1 PSEx was mixed with Ni. PSEx successfully reduced the negative effects of Ni, which can be attributed to its content of antioxidants and bioactive ingredients.


Assuntos
Cebolas , Punica granatum , Níquel , Raízes de Plantas , Fragmentação do DNA , Clorofila A , Meristema , Aberrações Cromossômicas , Dano ao DNA , DNA , Extratos Vegetais/farmacologia , Prolina/farmacologia
16.
Ecotoxicol Environ Saf ; 265: 115500, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37757624

RESUMO

Zinc (Zn) is considered as one of the heavy metal pollutants in soil affecting agriculture. Salicylic acid (SA) is an important phytohormone that can mitigate effects against various abiotic stresses in plants, however, its exploration to improve Zn stress tolerance in alfalfa plants is still elusive. Thus, in the present study, exogenous SA treatment was conducted on alfalfa plants under Zn stress. The effects of exogenous SA on the physiological effects of alfalfa plants and the expression levels related genes were studied. This study tested the biomass, relative water content, chlorophyll levels, photosynthetic capacity, proline and soluble sugar contents, detected the activity of antioxidant enzymes (such as peroxidase and superoxide dismutase), glutathione biosynthesis, and endogenous SA levels, and quantified the genes associated with the antioxidant system and glutathione metabolism-mediated Zn stress. The results showed that exogenous SA could elevate the physiological adaptability of alfalfa plants through enhancing photosynthesis, proline and soluble sugar levels, stimulating antioxidant system and glutathione metabolism, and inducing the transcription level of related genes, thereby diminishing oxidative stress, inhibiting excessive Zn accumulation of alfalfa plants, increasing tolerance to Zn stress, and reducing the toxicity of Zn. Collectively, the application of SA alleviates Zn toxicity in alfalfa plants. The findings gave first insights into the regulatory mechanism of the Zn stress tolerance of alfalfa by exogenous SA and this might have positive implications for managing other plants which are suffering Zn stress.


Assuntos
Antioxidantes , Medicago sativa , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Medicago sativa/genética , Medicago sativa/metabolismo , Zinco/farmacologia , Ácido Salicílico/farmacologia , Clorofila/metabolismo , Glutationa/metabolismo , Prolina/farmacologia , Prolina/metabolismo , Açúcares
17.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37432745

RESUMO

Proline and its synthesis enzyme pyrroline-5-carboxylate reductase 1 (PYCR1) are implicated in epithelial-mesenchymal transition (EMT), yet how proline and PYCR1 function in allergic asthmatic airway remodeling via EMT has not yet been addressed to our knowledge. In the present study, increased levels of plasma proline and PYCR1 were observed in patients with asthma. Similarly, proline and PYCR1 in lung tissues were high in a murine allergic asthma model induced by house dust mites (HDMs). Pycr1 knockout decreased proline in lung tissues, with reduced airway remodeling and EMT. Mechanistically, loss of Pycr1 restrained HDM-induced EMT by modulating mitochondrial fission, metabolic reprogramming, and the AKT/mTORC1 and WNT3a/ß-catenin signaling pathways in airway epithelial cells. Therapeutic inhibition of PYCR1 in wild-type mice disrupted HDM-induced airway inflammation and remodeling. Deprivation of exogenous proline relieved HDM-induced airway remodeling to some extent. Collectively, this study illuminates that proline and PYCR1 involved with airway remodeling in allergic asthma could be viable targets for asthma treatment.


Assuntos
Asma , Hipersensibilidade , Animais , Camundongos , Remodelação das Vias Aéreas , Prolina/farmacologia , Pulmão
18.
Eur J Med Chem ; 259: 115679, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37517203

RESUMO

Stachydrine is a hydrophilic quaternary amine salt with good antitumor effect, but its application is limited due to its rapid metabolism and low bioavailability. We synthesized and evaluated nine prodrugs of stachydrine, which showed suitable hydrophobicity (CLogP: -2.58-4.78, vs SS-0: -3.32) and better in vitro anticancer activity (IC50: 0.34 µM-14.03 mM, vs SS-0: 38.97 mM-147.19 mM) in comparison with stachydrine. Among them, SS-12, SS-16 and SS-18 are the most effective compounds against 4T1 cells, and the IC50 is 2.15-24.14 µM. Especially, compared with stachydrine, SS-12 significantly blocked the cell cycle in the G0/G1 phase, reduced the mitochondrial membrane potential, and induced the apoptosis of 4T1 cells through mitochondria pathway, which increased the expressions of Bax and cleaved caspase-3 protein, decrease the expression of Bcl-2. The pharmacokinetics of SS-12 showed a rational bioavailability (79.6%), and a longer retention time (T1/2 = 7.62 h) than that of stachydrine (T1/2 ≈ 1.16 h) in rats. Compared with stachydrine, SS-12 significantly enhanced the anticancer efficacy (56.32% of tumor-inhibition rates, vs SS-0: 3.89%), meanwhile, ameliorated the tumor-induced organ damage in mice. Therefore, SS-12 may be a promising prodrug of stachydrine against breast cancer.


Assuntos
Antineoplásicos , Neoplasias , Ratos , Animais , Camundongos , Linhagem Celular Tumoral , Fase G1 , Ciclo Celular , Prolina/farmacologia , Apoptose , Proliferação de Células , Antineoplásicos/farmacologia
19.
Cell Death Differ ; 30(8): 1916-1930, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419986

RESUMO

Solute carrier family 25 member 51 (SLC25A51) was recently identified as the mammalian mitochondrial NAD+ transporter essential for mitochondria functions. However, the role of SLC25A51 in human disease, such as cancer, remains undefined. Here, we report that SLC25A51 is upregulated in multiple cancers, which promotes cancer cells proliferation. Loss of SLC25A51 elevates the mitochondrial proteins acetylation levels due to SIRT3 dysfunctions, leading to the impairment of P5CS enzymatic activity, which is the key enzyme in proline biogenesis, and the reduction in proline contents. Notably, we find fludarabine phosphate, an FDA-approved drug, is able to bind with and inhibit SLC25A51 functions, causing mitochondrial NAD+ decrease and proteins hyperacetylation, which could further synergize with aspirin to reinforce the anti-tumor efficacy. Our study reveals that SLC25A51 is an attractive anti-cancer target, and provides a novel drug combination of fludarabine phosphate with aspirin as a potential cancer therapy strategy.


Assuntos
Prolina , Sirtuína 3 , Animais , Humanos , Acetilação , Prolina/farmacologia , Prolina/metabolismo , Mitocôndrias/metabolismo , Sirtuína 3/metabolismo , Homeostase , Mamíferos/metabolismo
20.
Bioorg Chem ; 138: 106641, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300963

RESUMO

Gramicidin S, natural antimicrobial peptide is used commercially in medicinal lozenges for sore throat and Gram-negative and Gram-positive bacterial infections. However, its clinical potential is limited to topical applications because of its high red blood cells (RBC) cytotoxicity. Given the importance of developing potential antibiotics and inspired by the cyclic structure and druggable features of Gramicidin S, we edited proline α-carbon with stereodynamic nitrogen to examine the direct impact on biological activity and cytotoxicity with respect to prolyl counterpart. Natural Gramicidin S (12), proline-edited peptides 13-16 and wild-type d-Phe-d-Pro ß-turn mimetics (17 and 18) were synthesized using solid phase peptide synthesis and investigated their activity against clinically relevant bacterial pathogens. Interestingly, mono-proline edited analogous peptide 13 showed moderate improvement in antimicrobial activity against E. coli ATCC 25922 and K.pneumoniae BAA 1705 as compared to Gramicidin S. Furthermore, proline edited peptide 13 exhibited equipotent antimicrobial effect against MDR S. aureus and Enterococcus spp. Analysis of cytotoxicity against VERO cells and RBC, reveals that proline edited peptides showed two-fivefold lesser cytotoxicity than the counterpart Gramicidin S. Our study suggests that introducing single azPro/Pro mutation in Gramicidin S marginally improved the activity and lessens the cytotoxicity as compared with the parent peptide.


Assuntos
Gramicidina , Prolina , Animais , Chlorocebus aethiops , Gramicidina/farmacologia , Gramicidina/química , Prolina/farmacologia , Prolina/química , Escherichia coli , Staphylococcus aureus , Células Vero , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...